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Université Paris-Sud, Bâtiment 100, 91405 Orsay Cedex, France

E-mail: pierpaolo.vivo@brunel.ac.uk

Received 16 January 2007, in final form 27 February 2007
Published 30 March 2007
Online at stacks.iop.org/JPhysA/40/4317

Abstract
We analytically compute the probability of large fluctuations to the left of the
mean of the largest eigenvalue in the Wishart (Laguerre) ensemble of positive
definite random matrices. We show that the probability that all the eigenvalues
of a (N × N) Wishart matrix W = XT X (where X is a rectangular M × N

matrix with independent Gaussian entries) are smaller than the mean value
〈λ〉 = N/c decreases for large N as ∼exp

[− β

2 N2�−
(

2√
c

+ 1; c
)]

, where
β = 1, 2 corresponds respectively to real and complex Wishart matrices,
c = N/M � 1 and �−(x; c) is a rate (sometimes also called large deviation)
function that we compute explicitly. The result for the anti-Wishart case
(M < N) simply follows by exchanging M and N. We also analytically
determine the average spectral density of an ensemble of Wishart matrices
whose eigenvalues are constrained to be smaller than a fixed barrier. Numerical
simulations are in excellent agreement with the analytical predictions.

PACS numbers: 02.50.−r, 02.10.Yn, 24.60.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Consider a rectangular (M × N) matrix X whose elements Xij represent some data. The N
entries of each of the M rows constitute the components of an N-dimensional vector �Xi (with
i = 1, 2, . . . , M). The vector �Xi (the ith row of the array) represents the ith sample of the
data and the matrix element Xij represents the j th component of the vector �Xi . For example,
suppose we are considering a population of M students in a class, and for each student we
have the data of their heights, their marks in an examination, their weights, etc forming a
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vector of N elements (or traits) for each of the M students. Then the product W = XT X

is a positive definite symmetric (N × N) matrix that represents the covariance matrix of the
data (unnormalized). This matrix characterizes the correlations between different traits. The
spectral properties of this matrix, i.e. its eigenvectors and eigenvalues, play a very important
role in the so-called ‘principal components analysis’ (PCA) of multivariate data, a technique
that is used regularly in detecting hidden patterns in data and also in image processing [1–3],
amongst other applications. In PCA, one diagonalizes the covariance matrix W and identifies
all the eigenvalues and eigenvectors. The data are usually maximally scattered in the direction
of its principal eigenvector, corresponding to the largest eigenvalue, and are least scattered
in the direction of the eigenvector, corresponding to the minimum eigenvalue. One can then
prune the data by successively getting rid of the components (setting them to zero) along the
eigenvectors corresponding to the smaller eigenvalues, but retaining the components along
the larger eigenvalues, in particular those corresponding to the maximal eigenvalue. This
method thus reduces the effective dimension of the data. This technique is called ‘dimension
reduction’ and forms the basis of, e.g, image compression in computer vision [3].

When the underlying data are random, e.g. the elements of the matrix X are independent
and identically distributed (i.i.d) random variables, real or complex, drawn from a Gaussian
distribution, the product matrices W = X†X constitute the so-called Wishart ensemble,
named after Wishart who first introduced them [4]. In the literature one can also find the term
‘Laguerre’ ensemble, because the Laguerre polynomials arise in the analytical treatment of its
spectral properties.

These Wishart random matrices have been extremely useful in multivariate statistical data
analysis [1, 5] mentioned above (where W represents the covariance matrix) with applications
in various fields ranging from meteorological data [6] to finance [7, 8]. Such matrices are also
useful to analyse the capacity of channels with multiple antennae and receivers [9]. They also
appear in nuclear physics [10], quantum chromodynamics [11] and also in statistical physics
such as in a class of (1 + 1)-dimensional directed polymer problems [12]. Recently, Wishart
matrices have also been used in the context of knowledge networks [13] and new mathematical
results for the distribution of the matrix elements for the anti-Wishart matrices (when M < N )
have been obtained [14, 15].

Given that the joint distribution of the elements of the (M ×N) matrix X (real or complex)
is a Gaussian, P [X] ∝ exp

[− β

2 tr(X†X)
]
, where the Dyson index β = 1, 2 corresponds

respectively to real and complex matrices [16], the spectral properties of the Wishart matrix
W = X†X have been studied extensively for many decades. For the case when M � N (the
number of samples is larger than the dimension) it is known that all the eigenvalues are positive,
a typical eigenvalue scales as λ ∼ N for large N and the average density of eigenvalues in the
large N limit has a scaling form ρN(λ) ≈ 1

N
f
(

λ
N

)
, where f (x) is the Marčenko–Pastur [17]

function on the compact support x ∈ [x−, x+]:

f (x) = 1

2πx

√
(x+ − x)(x − x−) (1)

with x± = ( 1√
c
±1
)2

and c = N/M (with c � 1). (This result was also rederived by a different
method by Dyson [18], and the spectral fluctuations were numerically investigated by Bohigas
and Flores [19]). Thus, for c � 1, all the eigenvalues lie within a compact Marčenko–Pastur
sea and the average eigenvalue is

〈λ〉 =
∫ ∞

0
ρN(λ)λ dλ = N

c
. (2)

For all c < 1, the distribution goes to zero at the edges x− and x+. For the case c = 1 (x− = 0
and x+ = 4), the distribution diverges as x−1/2 at the origin, f (x) = 1

2π

√
(4 − x)/x for
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Figure 1. The dashed line schematically shows the Marčenko–Pastur form of the average density
of states for c = 1. The average eigenvalue for c = 1 is 〈λ〉 = N . For c = 1, the largest eigenvalue
is centred around its mean 〈λmax〉 = 4N and fluctuates over a scale of width N1/3. The probability
of fluctuations on this scale is described by the Tracy–Widom distribution (shown schematically).

0 � x � 4 (shown schematically in figure 1). For the anti-Wishart case (M < N , i.e. c > 1),
where one has M positive eigenvalues (the rest of the (N − M) eigenvalues are identically
zero), the corresponding result can be obtained from the M � N case simply by exchanging
M and N.

Another important issue in the context of PCA is the distribution of the largest eigenvalue
of a Wishart random matrix and a lot of recent work has been devoted to this question
[5, 12, 20–23]. From the exact analytical form of the density of states, it follows that the
average of the maximum eigenvalue for large N is 〈λmax〉 ≈ x+(c)N where x+(c) = ( 1√

c
+ 1
)2

.
However, for finite but large N, the maximum eigenvalue fluctuates, around its mean x+(c)N ,
from one sample to another. A natural question is: what is the full probability distribution
of the largest eigenvalue λmax? Recently, Johansson [12] and independently Johnstone [5]
showed that for large N these fluctuations typically occur over a scale ∼O(N1/3) around the
mean, i.e. the upper edge of the Marčenko–Pastur distribution, and the probability of typical
fluctuations χ = N−1/3[λmax − x+(c)N ], properly centred and scaled, is described by the
well-known Tracy–Widom distribution (see section 2 for details).

Note that the Tracy–Widom distribution describes the probability of typical and small
fluctuations of λmax over a narrow region of width ∼O(N1/3) around the mean 〈λmax〉 ≈
x+(c)N . A question that is particularly important in the context of PCA is how to describe
the probability of atypical and large fluctuations of λmax around its mean, say over a wider
region of width ∼O(N)? For example, what is the probability that all the eigenvalues of a
Wishart random matrix are less than the average 〈λ〉 ≈ N/c for large N? This is the same as
the probability that λmax � N/c. Since 〈λmax〉 ≈ x+(c)N , this requires the computation of the
probability of an extremely rare event characterizing a large deviation of ∼O(N) to the left of
the mean (see e.g. a schematic picture for c = 1 in figure 1). Questions of this kind have been
recently addressed in [24] on which we heavily rely, while for the general large deviations
theory in connection with random matrices the reader is referred to [25].

In the context of PCA, this large deviation issue arises quite naturally because one is there
interested in getting rid of redundant data by the ‘dimension reduction’ technique and keeping
only the principal part of the data in the direction of the eigenvector representing the maximum
eigenvalue, as mentioned before. The ‘dimension reduction’ technique works efficiently only
if the largest eigenvalue is much larger than the other eigenvalues. However, if the largest
eigenvalue is comparable to the average eigenvalue 〈λ〉, the PCA technique is not very useful.
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Thus, the knowledge of large negative fluctuations of λmax from its mean 〈λmax〉 ≈ x+(c)N

provides useful information about the efficiency of the PCA technique.
The main purpose of this paper is to provide exact analytical results for these large

negative fluctuations of λmax from its mean value. Rigorous mathematical results about the
asymptotics of the Airy-kernel determinant (i.e. the probability that the largest eigenvalue lies
deep inside the Marčenko–Pastur sea) for the cases c = 1 and β = 2 have been recently
obtained [26]. Here we follow the Coulomb gas approach [16, 27], which interprets the
eigenvalues of a random matrix as a fluid of charged interacting particles, and use standard
functional integration methods of statistical physics. This approach has been exploited in the
context of the Laguerre ensemble for the first time by Chen and Manning [28], who performed
a detailed asymptotic analysis of the level spacing for general β and c > 0 and determined
the distribution of the two smallest eigenvalues’ in a certain double-scaling limit. These
techniques have been also recently used to obtain analytically the large negative fluctuations
of the maximum eigenvalue for the Gaussian ensembles [24]. Here we adopt this method for
the Wishart ensemble.

We show that for c � 1, the probability of large fluctuations to the left of the mean
〈λmax〉 ≈ x+(c)N behaves, for large N, as

Prob[λmax � t, N ] ∼ exp

[
−β

2
N2�−

(
x+(c)N − t

N
; c

)]
, (3)

where t ∼ O(N) � x+(c)N is located deep inside the Marčenko–Pastur sea and �−(x; c)

is a certain left rate (sometimes also called large deviation) function with x being the main
argument of the function and c being a parameter. In this paper, we compute the rate function
�−(x; c) explicitly. Knowing this function, it then follows that for large N

Prob[λmax � 〈λ〉 = N/c,N ] ∼ exp(−θ(c)N2), (4)

where the coefficient

θ(c) = β

2
�−

(
2√
c

+ 1; c

)
. (5)

For example, for the case c = 1 (M = N), we show that

θ(1) = β

(
log 2 − 33

64

)
= 0.177 522 . . . β. (6)

The corresponding result for the anti-Wishart matrices (M < N) simply follows by exchanging
M and N. In this paper, we focus only on the left large deviations of λmax. The corresponding
probability of large fluctuations of λmax to the right of the mean 〈λmax〉 was previously computed
explicitly by Johansson [12] (see the following section for details).

As a byproduct of our analysis, we provide the general expression for the spectral density
of a constrained Wishart ensemble of matrices whose eigenvalues are restricted to be smaller
than a fixed barrier.

The paper is organized as follows. In section 2, we set up notations, we provide
some mathematical preliminaries and we recall some known results for the Wishart random
matrices as well as, for the sake of comparison, of Gaussian ensembles. Besides, this
section also serves to set up our notations for the rest of the paper. In section 3, we
outline the functional integration method followed by the steepest descent calculation. In
subsection 3.1 we derive the left rate function explicitly for the special case c = 1 and in
subsection 3.2 we extend the results to the case c < 1. In section 4 the analytical predictions
are compared to numerical simulations. Section 5 concludes the paper with a summary and
discussion, while the derivation of the rate function for c < 1 is given in the appendix.
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2. Wishart and Gaussian random matrices: some preliminaries

We consider a rectangular (M × N) matrix X with M rows (representing M different
samples) and N columns (representing N components of each sample). We assume that
the entries of the matrix X are i.i.d random variables each drawn independently from a
standard normal distribution, such that the joint distribution of the elements is given by
P [X] ∝ exp

[− β

2 tr(X†X)
]

where the Dyson index β = 1, 2 corresponds respectively to real
and complex matrices [16]. One then constructs the Wishart matrix W = X†X by taking the
product. The first natural question is: given the distribution of X, what is the joint distribution
of the elements of W? It turns out that this is not quite easy to compute. For the case when
M � N (when the number of samples is larger or equal to the dimension of the vector), this was
computed by Wishart [4]. The corresponding calculation for the opposite ‘anti-Wishart’ case,
when M < N , turns out to be much more complicated. This was first obtained numerically
[13] and only recently an analytical expression has been found [14, 15].

In contrast to the probability distribution of the matrix elements of W itself, the joint
probability distribution (jpd) of its eigenvalues was known since a long time [29], and from
it all the interesting spectral properties of the ensemble can be derived. We summarize them
here together with the corresponding ones for the Gaussian ensemble.

2.1. Wishart (anti-Wishart) ensemble

For the case when M � N , all the N eigenvalues are positive and their jpd is given by

PN(λ1, . . . , λN) = KN e− β

2

∑N
i=1 λi

N∏
i=1

λ
β

2 (1+M−N)−1
i

∏
j<k

|λj − λk|β (7)

where KN is a normalization constant and the parameter β = 1, 2 corresponds respectively to
the real and complex X. On the other hand, for the anti-Wishart case (M < N), there are only
M positive eigenvalues (the rest of the N −M eigenvalues are exactly 0) and their jpd is given
exactly by the same formula as in (7) except that N and M are interchanged [15].

For the Wishart matrices with M � N , in the large N limit, the average density of states
has the scaling form, ρN(λ) ≈ 1

N
f
(

λ
N

)
where f (x) is the Marčenko–Pastur [17] function

defined in (1). The corresponding result for the anti-Wishart case (M < N), where one has
M eigenvalues, simply follows by exchanging M and N.

For large N the maximum eigenvalue fluctuates around its average 〈λmax〉 ≈ x+(c)N , and
the typical fluctuation occurs over a scale of width O(N1/3) around the mean. Johansson
[12] and independently Johnstone [5] computed the limiting distribution of these typical
fluctuations around the mean. They showed that for large N and for c � 1 [5, 12]

λmax =
(

1√
c

+ 1

)2

N + c1/6

(
1√
c

+ 1

)4/3

N1/3χ, (8)

where the random variable χ has an N independent limiting distribution Prob(χ � x) = Fβ(x),
which is the well-known Tracy–Widom distribution (see below).

2.2. Gaussian ensemble

In the case of a random (N × N) Gaussian matrix [27, 30], the jpd of eigenvalues is given by

PN(λ1, . . . , λN) = BN e− β

2

∑N
i=1 λ2

i

∏
j<k

|λj − λk|β, (9)
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where BN normalizes the jpd and β = 1, 2 and 4 corresponds respectively to the GOE
(Gaussian orthogonal ensemble), GUE (Gaussian unitary ensemble) and GSE (Gaussian
symplectic ensemble).

The average density of states in the large N limit has the scaling form ρN(λ) ≈ 1√
N

fsc
(

λ√
N

)
, where fsc(x) is the famous Wigner semi-circular law: fsc(x) =

√
1
π

[2 − x2] with

compact support over x ∈ [−√
2,

√
2].

Furthermore, the analogous asymptotic form of λmax is known to be [31]

λmax =
√

2N +
N−1/6

√
2

χ, (10)

where the random variable χ again has the limiting N independent distribution, Prob[χ �
x] = Fβ(x).

In this paper, the main interest is focused on the largest eigenvalue. In summary, both
the scaled variables λmax/N in the Wishart case and λmax/

√
N in the Gaussian case typically

fluctuate over a region of width ∼O(N−2/3) around their mean, and these typical fluctuations
are described by the Tracy–Widom law Fβ(x).

The function Fβ(x), computed as a solution of a nonlinear Painlevé differential equation
[31], approaches 1 as x → ∞ and decays rapidly to zero as x → −∞. For example, for
β = 2, F2(x) has the following tails [31]:

F2(x) → 1 − O
(
exp[−4x3/2/3]

)
as x → ∞

→ exp[−|x|3/12] as x → −∞. (11)

The probability density function fβ(x) = dFβ/dx thus has highly asymmetric tails.
It follows from (8) that in the Wishart case, the Tracy–Widom distribution describes the

probability of typical and small fluctuations of λmax over a narrow region of width ∼O(N1/3)

around the mean 〈λmax〉 ≈ x+(c)N , where x+(c) = ( 1√
c

+ 1
)2

.
As mentioned in the introduction, in this paper we are concerned not with the typical

small fluctuations of O(N1/3) around the mean, but rather with atypical large fluctuations of
O(N). Thus, we are interested in computing the probability of extremely rare events. In fact,
the question about the large deviation of the largest eigenvalue was addressed before in [12]
and it was proved by rigorous methods that for c � 1 the probability of large fluctuations to
the left of the mean 〈λmax〉 ≈ x+(c)N behaves for large N as in (3), but an explicit expression
for the left rate function �−(x; c) was missing so far. On the other hand, for large fluctuations
to the right of the mean 〈λmax〉 ≈ x+(c)N ,

1 − Prob[λmax � t, N ] ∼ exp

[
−β

2
N�+

(
t − x+(c)N

N
; c

)]
(12)

for t ∼ O(N) � x+(c)N located outside the Marčenko–Pastur sea to its right, and �+(x; c) is
the right rate function that was obtained explicitly in [12].

The purpose of this paper is to provide an exact result for �−(x; c) for all c � 1. For
the c > 1 (anti-Wishart) case, the result holds with M and N interchanged. Let us summarize
our main results. For the case c = 1, we give an explicit expression for the left rate function
�−(x; 1) as stated in (36). Subsequently, the results in (5) and (6) follow. For c < 1, the
function �−(x; c) has a rather long analytical expression which is derived in the appendix.
However, the function can be easily evaluated using Mathematica R© as illustrated in figure 5.

These results should be compared to the corresponding ones for the Gaussian case. For
the Gaussian ensemble, the left large deviations follow a similar law, namely,

Prob[λmax � t, N ] ∼ exp

[
−βN2�Gauss

−

(√
2N − t√

N

)]
, (13)
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where t ∼ O(N1/2) �
√

2N is located deep inside the Wigner sea. For the Gaussian case,
〈λ〉 = 0. Thus, the corresponding question about the probability that all eigenvalues are
less than their average is the same as the probability that all eigenvalues are negative. This
probability plays a very important role in determining the average number of maxima of a
random smooth potential, where a stationary point is a local maximum if all the eigenvalues
of the associated Hessian matrix are negative. The calculation of this probability has been a
subject of many theoretical and numerical studies with important applications in disordered
systems, supercooled liquids, glassy models [32, 33] and, more recently, in anthropic principle-
based string theory [34–36]. Very recently, the left rate function �Gauss

− (y) has been computed
exactly using the functional integration methods [24]. Using this result, it was shown in [24]
that for Gaussian matrices,

Prob[λmax � 0;N ] ∼ exp(−θN2), (14)

for large N where the coefficient

θ = β

4
log 3 = 0.274 653 . . . β. (15)

In this paper, we adapt the techniques used in [24] for Gaussian matrices to the Wishart case.
Similar techniques have recently been used also in other problems such as in the calculation
of the average number of stationary points for Gaussian random field with N components in
the large N limit [37, 38].

Incidentally, let us remark that our problem might also be tackled from the completely
different viewpoint of zero-dimensional replica field theories, thanks to their recently
discovered exact integrability [39]. This yet unexplored route may provide an independent
derivation of our results.

3. Functional integration and the method of steepest descent

Our starting point is the joint distribution of eigenvalues of the Wishart ensemble in (7). Let
PN(t) be the probability that the maximum eigenvalue λmax is less than or equal to t. Clearly,
this is also the probability that all the eigenvalues are less than or equal to t and can be
expressed as a ratio of two multiple integrals

PN(t) = Prob[λmax � t] = Z1(t)

Z0
=

∫ t

0 . . .
∫ t

0 dλ1 . . . dλN exp
(− β

2 F [�λ]
)

∫∞
0 . . .

∫∞
0 dλ1 . . . dλN exp

(− β

2 F [�λ]
) , (16)

where

F [�λ] =
N∑

i=1

λi −
(

1 + M − N − 2

β

) N∑
i=1

log λi −
∑
j �=k

log|λj − λk|. (17)

Written in this form, F mimics the free energy of a 2D Coulomb gas of interacting particles
confined to the positive half-line (λ > 0) and subject to an external linear+logarithmic
potential, as mentioned in the introduction. The denominator in (16), which is simply a
normalization constant, represents the partition function of a free or ‘unconstrained’ Coulomb
gas over λ ∈ [0,∞). The numerator, on the other hand, represents the partition function of
the same Coulomb gas, but with the additional constraint that the gas is confined inside the
box λ ∈ [0, t], i.e. there is an additional wall or infinite barrier at the position λ = t . We will
refer to the numerator as the partition function of a ‘constrained’ Coulomb gas. The constraint
should not be effective when t < x− or t > x+.

Note that in the Gaussian case, the external potential is harmonic over the whole real line
(V (λ) = λ2/2), while in the Wishart case, V (λ) = ∞ for λ < 0 (infinite barrier at λ = 0) and



4324 P Vivo et al

V (λ) = λ − (1 + M − N − 2/β) log λ for λ > 0 representing a linear+logarithmic potential.
By comparing the external potential and the logarithmic interaction term, it is easy to see that
while for Gaussian ensembles a typical eigenvalue scales as λ ∼ √

N for large N, for the
Wishart case it scales as λ ∼ N .

After defining the constrained charge density,

�̂N (λ) := �N(λ; t) = 1

N

N∑
i=1

δ(λ − λi)θ(t − λ) (18)

and taking into account the following trivial identity for a generic function h(x):
N∑

i=1

h(λi) = N

∫
dλ �̂N(λ)h(λ), (19)

we may express, for large N, the partition function Z1(t) in (16) as a functional integral [24]:

Z1(t) ∝
∫

D[�̂N ] exp

{
−β

2

[
N

∫ t

0
�̂N (λ)λ dλ − N(M − N + 1 − 2/β)

∫ t

0
�̂N (λ) log λ dλ

−N2
∫ t

0

∫ t

0
�̂N (λ)�̂N(λ′) log|λ − λ′| dλ dλ′ − N

∫ t

0
�̂N (λ) log[�̂N (λ)]dλ

]}
,

(20)

where the last entropic term is of order O(N) and arises from the change of variables while
going from an ordinary multiple integral to a functional integral, [{λi}] → [�̂N (λ)]. The
constrained charge density �̂N (λ) satisfies the obvious constraints �̂N (λ) = 0 for λ > t and∫ t

0 �̂N (λ) dλ = 1.
Since we are interested in fluctuations of ∼O(N), it is convenient to work with the

rescaled variables λ = xN and ζ = t/N . It is also reasonable to assume that for large N, the
charge density scales accordingly as �̂N (λ) = N−1f̂ (λ/N) so that f̂ (x) = 0 for x > ζ and∫ ζ

0 f̂ (x) dx = 1.
In terms of the rescaled variables, the energy term in (20) becomes proportional to N2

while the entropy term (∼O(N)) is subdominant in the large N limit. Eventually, we can write

Z1(ζ ) ∝
∫

D[f̂ ] exp

(
−β

2
N2S[f̂ (x); ζ ] + O(N)

)
, (21)

where

S[f̂ (x); ζ ] =
∫ ζ

0
xf̂ (x) dx − α

∫ ζ

0
f̂ (x) log(x) dx −

∫ ζ

0

∫ ζ

0
f̂ (x)f̂ (x ′) log|x − x ′| dx dx ′

+ C1

[∫ ζ

0
f̂ (x) dx − 1

]
, (22)

where we have introduced the parameter α = 1−c
c

for later convenience. In (22), C1 is a
Lagrange multiplier enforcing the normalization of f̂ .

For large N we can evaluate the leading contribution to the action (22) by the method of
steepest descent. This gives

Z1(ζ ) ∝ exp

[
−β

2
N2S[f̂ �(x); ζ ] + O(N)

]
, (23)

where f̂ � is the solution of the stationarity condition

δS[f̂ (x); ζ ]

δf̂ (x)
= 0. (24)
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Table 1. Values of L1 and A in the different regions of the (c, ζ ) plane.

c = 1 0 < c < 1

0 < ζ < x+ (barrier effective) L1 = 0 (32) L1: see (50)

A = ζ+4
2 (32) A = α

√
ζ
L1

> ζ (44)

ζ � x+ (barrier ineffective) L1 = 0 L1 = x−
A = ζ = 4 A = ζ = x+

This gives for 0 � x � ζ ,

x − α log x + C1 = 2
∫ ζ

0
f̂ (x ′) log|x − x ′| dx ′. (25)

Differentiating (25) once with respect to x gives

1

2
− α

2x
= P

∫ ζ

0

f̂ (x ′)
x − x ′ dx ′, 0 � x � ζ, (26)

where P denotes the Cauchy principal part.
Finding a solution to the integral equation (26) is the main technical task. The following

two subsections are devoted to the solution of (26), first for the special case c = 1 and then for
0 < c < 1. We remark that the solution of (26) gives the average density of eigenvalues in the
limit of large N for an ensemble of Wishart matrices whose rescaled eigenvalues are restricted
to be smaller than the barrier ζ . We will refer to f̂ (x) as the constrained spectral density.

Before proceeding to the technical points, it may be informative to first summarize the
results for the constrained spectral density f̂ (x) in the general 0 < c � 1 case. The most
general form is

f̂ (x) = 1

2π

√
x − L1(c, ζ )√

ζ − x

[
A(c, ζ ) − x

x

]
, (27)

where L1 is the lower edge of the spectrum and A is related to the mutual position of the
barrier with respect to the lower edge. In table 1, we schematically anticipate the values for
L1 and A in the different regions of the (c, ζ ) plane.

The support of f̂ is

L1(c, ζ ) � x � min[ζ,A(c, ζ )]. (28)

At the lower edge of the support L1(c, ζ ), the density vanishes unless c = 1, in which
case it diverges as ∼1/

√
x.

At the upper edge of the support, according to the value of the minimum (ζ or A(c, ζ ))
in (28) the density can respectively diverge as ∼1/

√
ζ − x or vanish.

Note that the unconstrained Marčenko–Pastur law (1) is recovered from (27) when the
barrier is ineffective, i.e. ζ � x+.

3.1. The c = 1 case

In this case, the support of the unconstrained spectral density is (0, 4], and the Marčenko–
Pastur law prescribes an inverse square root divergence at x = 0 . Furthermore, the density
vanishes at x = 4 (see figure (1)).

In the constrained case, the barrier at ζ is only effective when 0 � ζ � 4. When the
barrier crosses the point ζ = 4 from below, the density shifts back again to the unconstrained
case.
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Figure 2. Constrained spectral density f̂ (x) for the barrier at ζ = 1 and ζ = 2.

The integral equation for f̂ (x) (26) becomes

1

2
= P

∫ ζ

0

f̂ (x ′)
x − x ′ dx ′, 0 � x � ζ. (29)

The general solution of equations of the type

P
∫ ζ

0

f̂ (x ′)
x − x ′ dx ′ = g(x) (30)

is given by Tricomi’s theorem [40]:

f̂ (x) = 1

π2
√

x(ζ − x)

[
P
∫ ζ

0

√
ω(ζ − ω)

g(ω)

ω − x
dω + B

]
, (31)

where B is an arbitrary constant. After putting g(ω) = 1/2 in (31) and determining B by the
normalization condition

∫ ζ

0 f̂ (x) dx = 1, we finally get

f̂ (x) = 1

2π
√

x(ζ − x)

[
ζ

2
+ 2 − x

]
, 0 � x � ζ. (32)

A plot of this charge density for two values of the barrier ζ is given in figure 2. In summary,
the average density of states with a barrier at ζ is given by

f̂ (x) =



1
2π

√
x(ζ−x)

[
ζ

2 + 2 − x
]

0 � ζ � 4

1
2π

√
4−x
x

ζ � 4.
(33)

Thus, for all ζ > 4, the solution sticks to the ζ = 4 case. Note that both cases in (33) can be
obtained from the general formula (27).

Now we can substitute (33) back into (25) to find the value of the multiplier C1 and
eventually evaluate the action S[f �(x); ζ ] (22) explicitly for 0 � ζ � 4:

S(ζ ) := S[f̂ �(x); ζ ] = 2 log 2 − log ζ +
ζ

2
− ζ 2

32
. (34)

From (23), we get Z1(ζ ) ≈ exp(−βN2S(ζ )/2). For the denominator, Z0 = Z1(ζ = ∞) =
Z1(ζ = 4) ≈ exp(−βN2S(4)/2), where we have used the fact that the solution for any ζ > 4
(e.g., when ζ = ∞) is the same as the solution for ζ = 4. Thus, eventually the probability
PN(t) (16) decays for large N as

PN(t) = Z1(t)

Z0
≈ exp

{
−β

2
N2[S(ζ ) − S(4)]

}
≈ exp

{
−β

2
N2�−

(
4N − t

N
; 1

)}
, (35)
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Figure 3. Rate function �−(x; 1) (see (36)).

where the rate function is given by

�−(x; 1) =

2 log 2 − log(4 − x) − x

4
− x2

32
x � 0

0 x � 0
(36)

and is plotted in figure 3.
We now turn to the original problem of determining the probability of the following

extremely rare event, i.e. that all the eigenvalues happen to lie below the mean value
〈λ〉 = ∫ 4N

0 λρN(λ) dλ = N . Starting from (35), this is easily computed by putting the
barrier at the mean value t = N , i.e. ζ = 1. We then get for large N

Prob [λmax � 〈λ〉 = N,N] ∼ exp[−θ(1)N2], (37)

where

θ(1) = β

2
�− (3; 1)

= β

(
log 2 − 33

64

)
. (38)

Since we are calculating the probability of negative fluctuations of O(N) to the left of
the mean 〈λmax〉 = x+(c)N of λmax, when the argument of the left rate function �−(x; 1) is
very small (i.e. for fluctuations �O(N)), (35) should smoothly match with the left tail of the
Tracy–Widom distribution that describes fluctuations of ∼O(N1/3) to the left of the mean.
Indeed, from (36), as x → 0:

�−(x; 1) ≈ x3

192
. (39)

Substituting this small x behavior in (35) we get, for fluctuations �O(N) to the left of the
mean,

PN(t) ∼ exp

[
− β

384
N2(4 − t/N)3

]
= exp[−|χ |3/12], (40)

where χ = (t −4N)/(24/3N1/3). This coincides with Johansson’s result for the Tracy–Widom
fluctuations in (8) for c = 1 and comparing (40) and (11), we see that we recover the left tail
of the Tracy–Widom distribution.
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3.2. The c < 1 case

Our approach is very similar to the previous case. However, some additional technical
subtleties, which we will emphasize, arise in this case.

As in the unconstrained case, we expect a lower bound L1 ≡ L1(c, ζ ) to the support of
the constrained f̂ (x). The parameter L1 will be determined later through the normalization
condition for f̂ (x).

It is convenient to reformulate (26) in terms of the new variable y = x − L1, measuring
the distance with respect to the lower edge of the support, where f̂ (x) is assumed to vanish.

Equation (26) then reads

1

2
− α

2(y + L1)
= P

∫ L

0

f̃ (y ′)
y − y ′ dy ′ 0 � y � L, (41)

where we have denoted L = ζ − L1 and f̃ (y) ≡ f̂ (y + L1).
The general solution of (41) in this case is

f̃ (y) = 1

π
√

y(L − y)

[
−y

2
− α

2

√
L1(L + L1)

y + L1
+ B ′

]
, (42)

and the constant B ′ is determined by the condition f̃ (y = 0) = 0. Thus, we get

f̃ (y) =
√

y

2π
√

L − y

[
A − L1 − y

y + L1

]
, (43)

where

A ≡ A(c, ζ ) = α
√

ζ/L1. (44)

Note that everything is expressed in terms of the only still unknown parameter L1.
From (43) we can infer two kinds of possible behaviours for f̃ (y) due to the competing

effects of the singularity for y → L (where the denominator vanishes) and the suppression
for y → A − L1 (where the numerator vanishes).

Thus, depending on which of the following two conditions applies once we have put the
barrier at ζ :

A(c, ζ ) − L1(c, ζ ) > L(c, ζ ) →
√

L1(c, ζ )ζ < α (I)

A(c, ζ ) − L1(c, ζ ) < L(c, ζ ) →
√

L1(c, ζ )ζ > α (II),
(45)

f̃ can diverge at y = L or vanish at A − L1 respectively. In (45) we have restored the
functional dependence for clarity.

This is a subtle point because, given the barrier at ζ , we cannot determine a priori which
of the previous conditions holds. In fact, L1(c, ζ ) should be determined a posteriori separately
for each case from the normalization condition∫ L

0
f̃ (y) dy = 1. (46)

Once this is done, it turns out that conditions (45) can be reformulated in terms of the position
of the barrier ζ in the following much simpler way:

0 < ζ < x+ (I)

ζ � x+ (II).
(47)

We summarize here the final results in the two cases.
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Figure 4. Constrained spectral density f̂ (x) for c = 0.1 and ζ = 14.

3.2.1. Case I. 0 < ζ < x+. The normalization condition (46) leads to the following cubic
equation for w ≡ w(c, ζ ) = √

L1(c, ζ ):

w3 − [2(2 + α) + ζ ]w + 2α
√

ζ = 0, (48)

which has always three real solutions, one negative (w0) and two positive,

wk(c, ζ ) = 2p

3�1/3
cos

(
θ + 2kπ

3

)
, k = 0, 1, 2, (49)

where 


p = −[2(2 + α) + ζ ]

q = 2α
√

ζ

B = −
(

q2

4
+

p3

27

)
� =

√
−p3/27

θ = arctan

(
2
√

B

q

)
.

Note that w2 < w1. With simple considerations, we conclude that the right root to be chosen
is w2(c, ζ ). Thus,

L1(c, ζ ) = w2
2(c, ζ ). (50)

Finally, we can write down the full constrained unshifted spectral density as

f̂ (x) = 1

2π

√
x − L1(c, ζ )√

ζ − x

[
A(c, ζ ) − x

x

]
, (51)

valid for L1(c, ζ ) � x � ζ where L1(c, ζ ) is given by (50) and A(c, ζ ) by (44).
A plot of f̂ (x) for c = 0.1 and ζ = 14 is given in figure 4. In this case, L1(c, ζ ) ≈ 4.600 84

and A(c, ζ ) ≈ 15.6996.

3.2.2. Case II. ζ � x+. In this case, the barrier is immaterial and we should recover the
unconstrained Marčenko–Pastur distribution. The support of f̃ (y) is [0, A − L1] and this
implies that we can safely put L = A − L1 in (46).

The integration can be performed and coming back to the unshifted spectral density f̂ (x),
we get

f̂ (x) = 1

2π

√
x − L1

√
L2 − x

x
, (52)
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Table 2. Some values of the rate function (see the text for further explanation).

c �−
(

2√
c

+ 1; c
)

0.1 0.475 802
0.2 0.449 162
0.4 0.414 592
0.6 0.390 245
0.8 0.371 04
0.95 0.358 805

1 0.355 044

valid for L1 � x � L2, where{
L1 = x−
L2 = L1 + L = x+,

(53)

which is the unconstrained Marčenko–Pastur distribution, as it should.
Obviously, the interesting case for computing large fluctuations is case I, but before that

it is interesting to evaluate the limit c → 1− in (51) and (52) in order to recover the result (33)
in subsection 3.1.

The case of equation (52) is straightforwardly obvious. For the other, it is a matter of
simple algebra to show that

lim
c→1−

L1(c, ζ ) = 0 (54)

lim
c→1−

A(c, ζ ) = (ζ + 4)/2, (55)

so that (51) perfectly matches (33).
Furthermore, cases I and II should match smoothly as ζ hits precisely the limiting value

x+. This corresponds to A(c, ζ ) ≡ ζ → A(c, x+) ≡ x+. It is again straightforward to check
that this last condition implies L1(c, x+) ≡ x− so that (51) recovers (52).

Coming back to the large fluctuation problems for case I, we would like to insert (51)
into (22) in order to evaluate (23). It turns out that the integrals involved can be analytically
solved in terms of derivatives of hypergeometric functions, but a more explicit formula is
derived in the appendix. We will give here a plot of the rate function �−(x; c) that describes
the large fluctuations of O(N) to the left of the mean 〈λmax〉 = x+(c)N :

PN(t) = Z1(t)

Z0
≈ exp

{
−β

2
N2[S(ζ ) − S(x+)]

}

= exp

{
−β

2
N2�−

(
x+ − t

N
; c

)}
(56)

The plot is given in figure 5 for several values of c approaching 1. The limiting case �−(x; 1)

(36) is also plotted.
We can now compute to the leading order the probability that all the eigenvalues are less

than the mean value 〈λ〉 = N/c. This amounts to putting the barrier at t = N/c in (56), which
gives �−

(
2√
c

+ 1; c
)
. Several numerical values are given in table 2.
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Figure 5. Rate function �−(x; c) for the following values (from right to left) of c = 0.2, 0.4,

0.6, 0.8, 1. See also figure 3.

4. Numerical results

Formulae (33), (35), (51) and (56) have been numerically checked on samples of Hermitian
matrices (β = 2) up to N = 30,M = 300 and the agreement with the analytical results is
already excellent. We describe in this section the numerical methods and results.

A direct sampling of Wishart matrices up to those sizes is computationally very
demanding. We applied the following much faster technique, suggested in [22].

Let Lβ = BβBT
β be the tridiagonal matrix corresponding to

Bβ ∼




χ2a

χβ(N−1) χ2a−β

. . .
. . .

χβ χ2a−β(N−1)


 . (57)

Bβ is a square N × N matrix with nonzero entries on the diagonal and subdiagonal and
a = (β/2)M . The nonzero entries χk are independent random variables obtained from the
square root of a χ2-distributed variable with k degrees of freedom. It has been proved in [22]
that Lβ has the same joint probability distribution of eigenvalues as (7). Thus, as far as we are
interested in eigenvalue properties, we can use the Lβ ensemble instead of the original Wishart
one. This makes the diagonalization process much faster due to the tridiagonal structure of
the matrices Lβ .

We report the following four plots: the first two (figures 6 and 7) are for the case c = 1
and the last two (figures 8 and 9) for the case c = 0.1.

In figure 6, we plot the histogram of normalized eigenvalues λ/2N for an initial sample of
3 × 105 Hermitian matrices (β = 2, N = M = 30), such that the matrices with λmax/2N > ζ

are discarded. The barrier is located at ζ = 3. On top of it, we plot the theoretical
distribution (33).

In figure 8, we do the same but in the case N = 10,M = 100. The barrier is located at
ζ = 14. The theoretical distribution is now taken from (51).
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Figure 6. Constrained spectral density �̂N (λ) for N = M = 30. The barrier is at ζ = 3. In dotted
green is the histogram of rescaled eigenvalues over an initial sample of 3 × 105 matrices (β = 2).
In red (triangles) is the theoretical distribution.
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Figure 7. Natural logarithm of the probability that all the rescaled eigenvalues are less than ζ = 3
versus N for the case c = 1 (x+ = 4). The data points are fitted with a parabola (solid line).

To obtain the plots in figures 7 and 9, we generate ≈5×105L2 matrices for different values
of N = 7 → 30 (or 15). The parameters (c, ζ ) are kept fixed to the value (1, 3) for figure 7
(x+ = 4) and (0.1, 14) for figure 9 (x+ ≈ 17.32). The constraining capability of those barriers
can be evaluated by the ratio κ(ζ, c) = (x+ − ζ )/(x+ − x−), corresponding to the window of
forbidden values for the largest eigenvalue. We get κ(3, 1) = 0.25 and κ(14, 0.1) ≈ 0.26,
to be compared with the values of κ(ζ, c) = (2 +

√
c)/4 for the barrier at the mean value
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Figure 8. Constrained spectral density �̂N (λ) for N = 10,M = 100 (c = 0.1). The barrier is
at ζ = 14. In green (dash-dot) is the histogram of rescaled eigenvalues over an initial sample of
5 × 105 matrices (β = 2). In red (triangles) is the theoretical distribution.
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Figure 9. Natural logarithm of the probability that all the rescaled eigenvalues are less than ζ = 14
versus N for the case c = 0.1 (x+ ≈ 17.32). The data points are fitted with a parabola (solid line).

ζ = 1/c, which would respectively give κ = 0.75 and κ ≈ 0.58. This relative mildness of the
constraint allows us to get a much more reliable and faster statistics in the simulations.

For each value of N, we determine the empirical frequency r(N) of constrained matrices
as the ratio of the number of matrices whose largest rescaled eigenvalue is less than ζ to the
total number of samples (5 × 105). The logarithm of r(N) versus the size N is then naturally
fitted by a parabola aN2 + bN + ĉ to test the prediction for a in formulae (35) and (56).
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The best values for the coefficient a of the leading term are estimated as −0.006 153
(c = 1) and −0.0357 (c = 0.1), to be compared respectively with the theoretical prediction
�−(1; 1) ≈ −0.006 432 and �−(x+ − 14; 0.1) ≈ −0.036 66. Despite the relatively small
sizes and the O(N) corrections, the agreement is already good.

5. Conclusions

In this paper we have studied the probability of atypically large negative fluctuations (with
respect to the mean) of the largest eigenvalue λmax of a random Wishart matrix. The standard
Coulomb gas analogy for the joint probability distribution of eigenvalues allowed us to use the
tools of statistical physics, such as the functional integral method evaluated for large N by the
method of steepest descent. Using these tools, we have analytically computed the probability
of large deviations of λmax to the left of its mean. In particular, our main motivation was to
compute the probability of a rare event: all eigenvalues are less than the average 〈λ〉 = N/c.
This implies that the largest eigenvalue itself is less than 〈λ〉 = N/c. This question is relevant
in estimating the efficiency of the ‘principal components analysis’ method used in multivariate
statistical analysis of data. Our main result is to show that, to leading order in N, this
probability decays as ∼exp

[− β

2 N2�−
(

2√
c

+ 1; c
)]

, where �−(x; c) is a rate function that we
have explicitly computed. The quadratic, instead of linear, N dependence of the exponential
reflects the eigenvalue correlations.

Furthermore, our method allows us to determine exactly the functional form of the
constrained spectral density, i.e. the average charge density of a Coulomb gas constrained to
be within a finite box λ ∈ [0, t].

All the analytical results are in excellent agreement with the numerical simulations on
samples of Hermitian matrices up to N = 30, and the estimates of the large deviation prefactor
are already good even for N ∼ 15.

Acknowledgments

One of us (PV) has been supported by a Marie Curie Early Stage Training Fellowship (NET-
ACE project). We are grateful to Gernot Akemann, Igor Krasovsky and Yang Chen for helpful
comments and for pointing out to us relevant references. The support by Sergio Consoli
(Brunel) for the numerical simulations is also gratefully acknowledged.

Appendix. Rate function for c < 1

We evaluate in a closed form the action S(ζ ) := S[f̂ �(x); ζ ] (see (22)) for the case c < 1,
where f̂ �(x) is given by (51). The result is equation (A.3).

The rate function �−(x; c) for c < 1, given by

�−(x; c) = S (x+ − x) − S (x+) (A.1)

can be evaluated immediately.
After inserting (51) into (22) and determining C1 from (25), we find that S(ζ ) is given by

S(ζ ) = 1

2

∫ ζ

L1

f̂ (x)x dx − α

2

∫ ζ

L1

f̂ (x) log(x) dx

−
∫ ζ

L1

f̂ (x) log(x − L1) dx +
L1

2
− α

2
log(L1). (A.2)
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After the substitution x = (ζ − L1)t + L1 in the integrals in (A.2) and some simple algebra,
S(ζ ) can be expressed as

S(ζ ) = −α

2
�1 − �2 +

ζ − L1

2
� +

L1

2
− α

2
log(L1), (A.3)

where �k and � are the following functions of c and ζ :

�k = ζ − L1

2π

{
log(ζ − L1)

[
A

ζ − L1
I0

(
L1

ζ − L1

)
− π

2

]
+

A

ζ − L1
Ik

(
L1

ζ − L1

)}

� = A

4
− 3

16
ζ − L1

16
+

α

2π
I3

(
L1

ζ − L1

)
+

1

2
− log(2).

(A.4)

The functions Ik(x) are given by the following integrals, which are then computed explicitly
in a closed form:

I0(x) = d

dx
I3(x) (A.5)

I1(x) =
∫ 1

0
dt

log(t + x)

t + x

√
t

1 − t
(A.6)

I2(x) =
∫ 1

0
dt

log t

t + x

√
t

1 − t
(A.7)

I3(x) =
∫ 1

0
dt log(t + x)

√
t

1 − t
. (A.8)

We proceed to compute the three integrals in (A.6)–(A.8) following very closely
[28, paper I, appendix B].

The integral I3(x) (and thus also I0(x)) can be computed by Mathematica R©:

I3(x) = π

2

[
1 + 2x − 2

√
x(1 + x) + 2 log

[
1 +

√
1 +

1

x

]
+ log

(x

4

)]
, (A.9)

while I1(x) and I2(x) are given in terms of derivatives of hypergeometric functions. More
explicit expressions can be given as follows, starting with I1(x). Exploiting the identity
hλ log h = ∂λh

λ, we can rewrite the integral as

I1(x) =
[
∂λ

∫ 1

0
dt (t + x)λ

√
t

1 − t

] ∣∣∣∣
λ=−1

, (A.10)

and the integral in (A.10) can be evaluated in terms of Kummer’s hypergeometric function:

I1(x) = π

2

{
∂λ

[
xλ

2F1

(
−λ,

3

2
; 2;− 1

x

)]} ∣∣∣∣
λ=−1

. (A.11)

Now, applying the transformation formulae [41, 15.3.7, page 559] and evaluating the
derivatives of Gamma functions that arise, we finally get

I1(x) = π

2

[
−2 log 4 + 2î1(x) − 2

√
x

1 + x
log

(
4x

e2

)
− 2

√
xî2(x)

]
, (A.12)

where

î1(x) = [∂µ 2F1(1 − µ,−µ;−µ + 1/2;−x)]|µ=0 (A.13)

î2(x) = [∂µ(1 + x)µ−1/2
2F1(µ,µ + 1;µ + 3/2;−x)

]∣∣
µ=0. (A.14)
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To evaluate î1(x) and î2(x), we use the series expansion for hypergeometric functions
[41, 15.1.1, page 556] and upon differentiation we get

î1(x) = −
∞∑

n=1

B

(
1

2
, n

)
(−x)n, (A.15)

where B(v,w) = �(v)�(w)

�(v+w)
is Euler’s beta function. Introducing the integral representation of

the beta function

B(x, y) =
∫ 1

0
dt tx−1(1 − t)y−1 (A.16)

into (A.15) and upon exchanging summation and integral, we arrive with the help of∑∞
n=0(−xt)n = (1 + xt)−1 to

î1(x) = x

∫ 1

0

dt√
1 − t(1 + xt)

= 2

√
x

1 + x
arcsinh(

√
x). (A.17)

Following the same procedure, we get for î2(x),

î2(x) = 1√
1 + x

[log(1 + x) − i1(x)], (A.18)

where i1(x) is defined in [28] as

i1(x) = −2 + 2

√
1 + x

x
arctanh

(√
x

1 + x

)
. (A.19)

From (A.12) we get the final result for I1(x):

I1(x) = π

{
−log 4 +

√
x

1 + x

[
2arcsinh(

√
x)

+ 2

√
1 +

1

x
arctanh

(√
x

1 + x

)
− log[4x(1 + x)]

]}
. (A.20)

Following the very same procedure as in the previous case, we find for I2(x):

I2(x) = π

[
−log 4 +

√
x

x + 1
(2arcsinh(

√
x) − log(x))

]
. (A.21)

Now we compute the limit c → 1− in (A.3) to recover (34). Given that, for c → 1−, L1 →
0, α → 0 and A → (ζ + 4)/2, we have to evaluate the integrals Ik(x) for x → 0. This gives

I0(0) ∼ π (A.22)

I1(0) ∼ −π log 4 (A.23)

I2(0) ∼ −π log 4 (A.24)

I3(0) ∼ −π

2
(log 4 − 1). (A.25)

Then, S[f̂ �(x); ζ ]
∣∣
c→1− ∼ [−�2 + ζ

2 �
]∣∣

c→1− = − log ζ + 2 log 2 + ζ

2 − ζ 2

32 as it should (see
equation (34)).
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